

COLLABORATORS

Karen Veroy : Centre for Analysis, Scientific Computing and Applications, TU Eindhoven
Cecilia Pagliantini : Centre for Analysis, Scientific Computing and Applications, TU Eindhoven
Martin Grepl : Institute for Geometry and Practical Mathematics, RWTH Aachen

ACKNOWLEDGMENTS

ERC-818473 : work supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program

OUTLINE

1. INTRODUCTION
2. VARIATIONAL METHODS
3. MODEL APPROXIMATION
4. THE REDUCED BASIS ENSEMBLE KALMAN METHOD
5. NUMERICAL EXPERIMENTS
6. CONCLUSIONS

ASYNCHRONOUS DATA ASSIMILATION : AN INVERSE PROBLEM

$$
\boldsymbol{y}=\mathbf{L} u_{\text {TRUE }}+\boldsymbol{\epsilon}
$$

ASYNCHRONOUS
MEASUREMENTS

ASYNCHRONOUS DATA ASSIMILATION : AN INVERSE PROBLEM

$$
\boldsymbol{y}=\mathbf{L} u_{\mathrm{TRUE}}+\boldsymbol{\epsilon}
$$

$$
\left(\mathcal{M}_{\boldsymbol{\mu}} u, \psi\right)=0 \quad \forall \psi \in \mathcal{Y}
$$

ASYNCHRONOUS
PHYSICAL
MEASUREMENTS
MODEL

ASYNCHRONOUS DATA ASSIMILATION : AN INVERSE PROBLEM

OUTLINE

1. INTRODUCTION

2. VARIATIONAL METHODS
3. MODEL APPROXIMATION
4. THE REDUCED BASIS ENSEMBLE KALMAN METHOD
5. NUMERICAL EXPERIMENTS
6. CONCLUSIONS

VARIATIONAL DATA ASSIMILATION : CONSTRAINED MINIMIZATION

$$
\min _{\boldsymbol{\mu} \in \mathcal{P}} \mathcal{J}(\boldsymbol{\mu} \mid \boldsymbol{y}):=\frac{1}{2} \frac{\|\boldsymbol{y}-\mathbf{L} u\|_{\Sigma^{-1}}^{2}}{\text { DATA MISFIT }}
$$

where:

$$
\boldsymbol{y}=\mathbf{L} u_{\text {TRUE }}+\boldsymbol{\epsilon} \quad \text { with noise } \quad \boldsymbol{\epsilon} \sim \mathcal{N}(0, \Sigma)
$$

VARIATIONAL DATA ASSIMILATION : REGULARIZED

$$
\min _{\boldsymbol{\mu} \in \mathcal{P}} \mathcal{I}(\boldsymbol{\mu} \mid \boldsymbol{y}):=\frac{1}{2} \frac{\|\boldsymbol{y}-\mathbf{L} u\|_{\Sigma^{-1}}^{2}}{} \frac{\operatorname{DATA} \text { MISFIT }}{\| \mathcal{T}(\boldsymbol{\mu})} \text { STABILIZATION } \text { such that } \frac{\left(\mathcal{M}_{\boldsymbol{\mu}} u, \psi\right)=0 \quad \forall \psi \in \mathcal{Y}}{\text { WEAK MODEL }}
$$

where:

$$
\boldsymbol{y}=\mathbf{L} u_{\text {true }}+\boldsymbol{\epsilon} \quad \text { with noise } \quad \boldsymbol{\epsilon} \sim \mathcal{N}(0, \Sigma)
$$

VARIATIONAL DATA ASSIMILATION : UNREGULARIZED

$$
\min _{\boldsymbol{\mu} \in \mathcal{P}} \mathcal{J}(\boldsymbol{\mu} \mid \boldsymbol{y}):=\frac{1}{2} \frac{\|\boldsymbol{y}-\mathbf{L} u\|_{\Sigma^{-1}}^{2}}{\text { DATA MISFIT }}
$$

such that $\frac{\left(\mathcal{M}_{\boldsymbol{\mu}} u, \psi\right)=0 \quad \forall \psi \in \mathcal{Y}}{\text { WEAK MODEL }}$

where:

$$
\boldsymbol{y}=\mathbf{L} u_{\text {TRUE }}+\boldsymbol{\epsilon} \quad \text { with noise } \quad \boldsymbol{\epsilon} \sim \mathcal{N}(0, \Sigma)
$$

the solution of the un-regularized problem can be obtained employing an iterative regularization methods

$$
\boldsymbol{\mu}_{\mathrm{k}+1}=\boldsymbol{\mu}_{\mathrm{k}}+\mathcal{G}_{\mathrm{k}}\left(\boldsymbol{\mu}_{\mathrm{k}}, \boldsymbol{y}\right) \longleftarrow \text { Landweber iterations }
$$

VARIATIONAL DATA ASSIMILATION : UNREGULARIZED

$$
\min _{\boldsymbol{\mu} \in \mathcal{P}} \mathcal{J}(\boldsymbol{\mu} \mid \boldsymbol{y}):=\frac{1}{2} \frac{\|\boldsymbol{y}-\mathbf{L} u\|_{\Sigma^{-1}}^{2}}{\text { DATA MISFIT }}
$$

such that $\frac{\left(\mathcal{M}_{\boldsymbol{\mu}} u, \psi\right)=0 \quad \forall \psi \in \mathcal{Y}}{\text { WEAK MODEL }}$

where:

$$
\boldsymbol{y}=\mathbf{L} u_{\text {TRUE }}+\boldsymbol{\epsilon} \quad \text { with noise } \quad \boldsymbol{\epsilon} \sim \mathcal{N}(0, \Sigma)
$$

the solution of the un-regularized problem can be obtained employing an iterative regularization methods; those can be implemented via
\longrightarrow Local approaches (Newton's type methods) \longrightarrow Global approaches (Particles based methods)

THE ENSEMBLE KALMAN METHOD

We sample a particle ensemble of size J from a prior distribution π_{0} and update their positions as follows:

- $\mu_{0}^{(j)} \sim \pi_{0}:=e^{-\mathcal{T}(\boldsymbol{\mu})}$

THE ENSEMBLE KALMAN METHOD

We sample a particle ensemble of size J from a prior distribution π_{0} and update their positions as follows:

$$
\text { - } \mu_{0}^{(j)} \sim \pi_{0}:=e^{-\mathcal{T}(\mu)}
$$

For $n=0,1, \ldots$
i) Compute the model solution for each particle $\boldsymbol{\mu}_{n}^{(j)}$:

$$
u_{n}^{(j)} \in \mathcal{X} \quad \text { such that } \quad\left(\mathcal{M}_{\boldsymbol{\mu}_{n}^{(j)}} u_{n}^{(j)}, \psi\right)=0 \quad \forall \psi \in \mathcal{Y}
$$

THE ENSEMBLE KALMAN METHOD

We sample a particle ensemble of size J from a prior distribution π_{0} and update their positions as follows:

$$
\text { - } \mu_{0}^{(j)} \sim \pi_{0}:=e^{-\mathcal{T}(\mu)}
$$

For $n=0,1, \ldots$
ii) Compute the correlation matrices:

$$
\begin{aligned}
& P_{n}:=\operatorname{sum}\left(\mathbf{L} u_{n}^{(j)} \otimes \mathbf{L} u_{n}^{(j)}-\mathbf{L} \bar{u}_{n} \otimes \mathbf{L} \bar{u}_{n}\right) \cdot(J-1)^{-1} \\
& Q_{n}:=\operatorname{sum}\left(\boldsymbol{\mu}_{n}^{(j)} \otimes \mathbf{L} u_{n}^{(j)}-\overline{\boldsymbol{\mu}}_{n} \otimes \mathbf{L} \bar{u}_{n}\right) \cdot(J-1)^{-1}
\end{aligned}
$$

THE ENSEMBLE KALMAN METHOD

We sample a particle ensemble of size J from a prior distribution π_{0} and update their positions as follows:

- $\mu_{0}^{(j)} \sim \pi_{0}:=e^{-\mathcal{T}(\mu)}$
- $\boldsymbol{\mu}_{n+1}^{(j)} \sim \pi_{0} \cdot\left(e^{-\mathcal{J}(\mu \mid y)}\right)^{n+1}$

For $n=0,1, \ldots$
iii) Update each particle $\boldsymbol{\mu}_{n}^{(j)}$ in the ensemble:

$$
\boldsymbol{\mu}_{n+1}^{(j)}=\boldsymbol{\mu}_{n}^{(j)}+Q_{n}\left(\Sigma+P_{n}\right)^{-1}\left(\boldsymbol{y}-\mathbf{L} u_{n}^{(j)}\right)
$$

OUTLINE

1. INTRODUCTION

2. VARIATIONAL METHODS
3. MODEL APPROXIMATION
4. THE REDUCED BASIS ENSEMBLE KALMAN METHOD
5. NUMERICAL EXPERIMENTS
6. CONCLUSIONS

PARABOLIC pPDEs : SPACE-TIME CONSTRAINT

$$
\begin{array}{ll}
\partial_{t} u(\boldsymbol{x}, t ; \boldsymbol{\mu})+\mathcal{F}_{\boldsymbol{\mu}} u(\boldsymbol{x}, t ; \boldsymbol{\mu})=0 & \text { for any } \boldsymbol{x} \in \Omega \subset \mathbb{R}^{d} \text { and } t \in I:=[0, T] \\
u(\boldsymbol{x}, 0 ; \boldsymbol{\mu})-u_{0}(\boldsymbol{x}, \boldsymbol{\mu})=0 & \text { for any } \boldsymbol{x} \in \Omega \subset \mathbb{R}^{d}
\end{array}
$$

PARABOLIC pPDEs : SPACE-TIME CONSTRAINT

$$
\begin{array}{ll}
\partial_{t} u(\boldsymbol{x}, t ; \boldsymbol{\mu})+\mathcal{F}_{\boldsymbol{\mu}} u(\boldsymbol{x}, t ; \boldsymbol{\mu})=0 & \text { for any } \boldsymbol{x} \in \Omega \subset \mathbb{R}^{d} \text { and } t \in I:=[0, T] \\
u(\boldsymbol{x}, 0 ; \boldsymbol{\mu})-u_{0}(\boldsymbol{x}, \boldsymbol{\mu})=0 & \text { for any } \boldsymbol{x} \in \Omega \subset \mathbb{R}^{d}
\end{array}
$$

to which corresponds the variational formulation:

$$
\begin{array}{lc}
\int_{I}\left\langle\partial_{t} u(\boldsymbol{x}, t ; \boldsymbol{\mu})+\mathcal{F}_{\boldsymbol{\mu}} u(\boldsymbol{x}, t ; \boldsymbol{\mu}), v(\boldsymbol{x}, t)\right\rangle_{\mathcal{H}} d t=0 & \forall v(\boldsymbol{x}, t) \in L^{2}(I, \mathcal{V}) \\
\left\langle u(\boldsymbol{x}, 0 ; \boldsymbol{\mu})-u_{0}(\boldsymbol{x}, \boldsymbol{\mu}), \xi(\boldsymbol{x})\right\rangle_{\mathcal{H}}=0 & \forall \xi(\boldsymbol{x}) \in \mathcal{H}
\end{array}
$$

PARABOLIC pPDEs : SPACE-TIME CONSTRAINT

$$
\begin{array}{ll}
\partial_{t} u(\boldsymbol{x}, t ; \boldsymbol{\mu})+\mathcal{F}_{\boldsymbol{\mu}} u(\boldsymbol{x}, t ; \boldsymbol{\mu})=0 & \text { for any } \boldsymbol{x} \in \Omega \subset \mathbb{R}^{d} \text { and } t \in I:=[0, T] \\
u(\boldsymbol{x}, 0 ; \boldsymbol{\mu})-u_{0}(\boldsymbol{x}, \boldsymbol{\mu})=0 & \text { for any } \boldsymbol{x} \in \Omega \subset \mathbb{R}^{d}
\end{array}
$$

to which corresponds the variational formulation:

$$
\begin{array}{lc}
\int_{I}\left\langle\partial_{t} u(\boldsymbol{x}, t ; \boldsymbol{\mu})+\mathcal{F}_{\boldsymbol{\mu}} u(\boldsymbol{x}, t ; \boldsymbol{\mu}), v(\boldsymbol{x}, t)\right\rangle_{\mathcal{H}} d t=0 & \forall \\
\left\langle u(\boldsymbol{x}, 0 ; \boldsymbol{\mu})-u_{0}(\boldsymbol{x}, \boldsymbol{\mu}), \xi(\boldsymbol{x}, t)\right\rangle_{\mathcal{H}}=0 & \forall \begin{array}{c}
L^{2}(I, \mathcal{V}) \\
\xi(\boldsymbol{x}) \\
\mathcal{H} \\
\mathcal{H}
\end{array}
\end{array}
$$

PARABOLIC pPDEs : SPACE-TIME CONSTRAINT

$$
\begin{array}{ll}
\partial_{t} u(\boldsymbol{x}, t ; \boldsymbol{\mu})+\mathcal{F}_{\boldsymbol{\mu}} u(\boldsymbol{x}, t ; \boldsymbol{\mu})=0 & \text { for any } \boldsymbol{x} \in \Omega \subset \mathbb{R}^{d} \text { and } t \in I:=[0, T] \\
u(\boldsymbol{x}, 0 ; \boldsymbol{\mu})-u_{0}(\boldsymbol{x}, \boldsymbol{\mu})=0 & \text { for any } \boldsymbol{x} \in \Omega \subset \mathbb{R}^{d}
\end{array}
$$

to which corresponds the variational formulation:

$$
\begin{array}{lc}
\int_{I}\left\langle\partial_{t} u(\boldsymbol{x}, t ; \boldsymbol{\mu})+\mathcal{F}_{\boldsymbol{\mu}} u(\boldsymbol{x}, t ; \boldsymbol{\mu}), v(\boldsymbol{x}, t)\right\rangle_{\mathcal{H}} d t=0 & \forall \begin{array}{c}
v(\boldsymbol{x}, t) \\
\left\langle u(\boldsymbol{x}, 0 ; \boldsymbol{\mu})-u_{0}(\boldsymbol{x}, \boldsymbol{\mu}), \xi(\boldsymbol{x})\right\rangle_{\mathcal{H}}=0
\end{array} \\
\xi(\boldsymbol{x}) & \forall \begin{array}{c}
L^{2}(I, \mathcal{V}) \\
\mathcal{H} \\
\mathcal{Y}
\end{array}
\end{array}
$$

that can be written as:

$$
\left(\mathcal{M}_{\boldsymbol{\mu}} u, \psi\right)_{\mathcal{Y}}=0 \quad \forall \psi \in \mathcal{Y}
$$

NUMERICAL APPROXIMATION

the infinite dimensional problem can be approximated by Petrov-Galerkin projection

$$
\text { find } u_{\varepsilon} \in X_{\varepsilon} \subset \mathcal{X} \text { such that }\left(\mathcal{M}_{\mu} u_{\varepsilon}, \psi_{i}\right)=0 \text { for all } \psi_{i} \in \mathcal{Y}_{\varepsilon} \subset \mathcal{Y}
$$

NUMERICAL APPROXIMATION

the infinite dimensional problem can be approximated by Petrov-Galerkin projection

$$
\text { find } u_{\varepsilon} \in X_{\varepsilon} \subset \mathcal{X} \text { such that }\left(\mathcal{M}_{\mu} u_{\varepsilon}, \psi_{i}\right)=0 \text { for all } \psi_{i} \in \mathcal{Y}_{\varepsilon} \subset \mathcal{Y}
$$

where
$\mathcal{X}_{\varepsilon}:$ trial space \longleftarrow must ensure good approximation
$\mathcal{Y}_{\varepsilon}:$ test space \longleftarrow must ensure proper stability

NUMERICAL APPROXIMATION : REDUCED BASIS METHODS

the infinite dimensional problem can be approximated by Petrov-Galerkin projection

$$
\text { find } u_{\varepsilon} \in X_{\varepsilon} \subset \mathcal{X} \text { such that }\left(\mathcal{M}_{\mu} u_{\varepsilon}, \psi_{i}\right)=0 \text { for all } \psi_{i} \in \mathcal{Y}_{\varepsilon} \subset \mathcal{Y}
$$

where

```
\(\mathcal{X}_{\varepsilon}:\) trial space \(\longleftarrow\) must ensure good approximation
\(\mathcal{Y}_{\varepsilon}:\) test space \(\longleftarrow\) must ensure proper stability
```

Reduced Basis (RB) methods employ a set of pre-computed solutions

OUTLINE

1. INTRODUCTION
2. VARIATIONAL METHODS
3. MODEL APPROXIMATION
4. THE REDUCED BASIS ENSEMBLE KALMAN METHOD
5. NUMERICAL EXPERIMENTS
6. CONCLUSIONS

THE (REDUCED BASIS) ENSEMBLE KALMAN METHOD

We sample a particle ensemble of size J from a prior distribution π_{0} and update their positions as follows:

THE ENSEMBLE KALMAN METHOD

We sample a particle ensemble of size J from a prior distribution π_{0} and update their positions as follows:

For $n=0,1, \ldots$
i) Compute the model solution for each particle $\boldsymbol{\mu}_{n}^{(j)}$:

$$
u_{n}^{(j)} \in \mathcal{X} \quad \text { such that } \quad\left(\mathcal{M}_{\boldsymbol{\mu}_{n}^{(j)}} u_{n}^{(j)}, \psi\right)=0 \quad \forall \psi \in \mathcal{Y}
$$

THE REDUCED BASIS ENSEMBLE KALMAN METHOD

We sample a particle ensemble of size J from a prior distribution π_{0} and update their positions as follows:

For $n=0,1, \ldots$
i) Compute the model solution for each particle $\boldsymbol{\mu}_{n}^{(j)}$:
$u_{\varepsilon, n}^{(j)} \in \mathcal{X}_{\varepsilon} \quad$ such that $\quad\left(\mathcal{M}_{\boldsymbol{\mu}_{n}^{(j)}} u_{\varepsilon, n}^{(j)}, \psi_{i}\right)=0 \quad \forall \psi_{i} \in \mathcal{Y}_{\varepsilon}$

THE ENSEMBLE KALMAN METHOD

We sample a particle ensemble of size J from a prior distribution π_{0} and update their positions as follows:

For $n=0,1, \ldots$
ii) Compute the correlation matrices :

$$
\begin{aligned}
& P_{n}:=\operatorname{sum}\left(\mathbf{L} u_{n}^{(j)} \otimes \mathbf{L} u_{n}^{(j)}-\mathbf{L} \bar{u}_{n} \otimes \mathbf{L} \bar{u}_{n}\right) \cdot(J-1)^{-1} \\
& Q_{n}:=\operatorname{sum}\left(\boldsymbol{\mu}_{n}^{(j)} \otimes \mathbf{L} u_{n}^{(j)}-\overline{\boldsymbol{\mu}}_{n} \otimes \mathbf{L} \bar{u}_{n}\right) \cdot(J-1)^{-1}
\end{aligned}
$$

THE REDUCED BASIS ENSEMBLE KALMAN METHOD

We sample a particle ensemble of size J from a prior distribution π_{0} and update their positions as follows:

For $n=0,1, \ldots$
ii) Compute the correlation matrices :

$$
\begin{aligned}
& P_{\varepsilon, n}:=\operatorname{sum}\left(\mathbf{L} u_{\varepsilon, n}^{(j)} \otimes \mathbf{L} u_{\varepsilon, n}^{(j)}-\mathbf{L} \bar{u}_{\varepsilon, n} \otimes \mathbf{L} \bar{u}_{\varepsilon, n}\right) \cdot(J-1)^{-1} \\
& Q_{\varepsilon, n}:=\operatorname{sum}\left(\boldsymbol{\mu}_{n}^{(j)} \otimes \mathbf{L} u_{\varepsilon, n}^{(j)}-\overline{\boldsymbol{\mu}}_{n} \otimes \mathbf{L} \bar{u}_{\varepsilon, n}\right) \cdot(J-1)^{-1}
\end{aligned}
$$

THE ENSEMBLE KALMAN METHOD

We sample a particle ensemble of size J from a prior distribution π_{0} and update their positions as follows:

For $n=0,1, \ldots$
iii) Update each particle $\boldsymbol{\mu}_{n}^{(j)}$ in the ensemble:

$$
\boldsymbol{\mu}_{n+1}^{(j)}=\boldsymbol{\mu}_{n}^{(j)}+Q_{n}\left(\Sigma+P_{n}\right)^{-1}\left(\boldsymbol{y}-\mathbf{L} u_{n}^{(j)}\right)
$$

THE REDUCED BASIS ENSEMBLE KALMAN METHOD

We sample a particle ensemble of size J from a prior distribution π_{0} and update their positions as follows:

For $n=0,1, \ldots$
iii) Update each particle $\boldsymbol{\mu}_{n}^{(j)}$ in the ensemble:

$$
\boldsymbol{\mu}_{n+1}^{(j)} \stackrel{?}{=} \boldsymbol{\mu}_{n}^{(j)}+Q_{\varepsilon, n}\left(\Sigma+P_{\varepsilon, n}\right)^{-1}\left(\boldsymbol{y}-\mathbf{L} u_{\varepsilon, n}^{(j)}\right)
$$

THE REDUCED BASIS ENSEMBLE KALMAN METHOD

We sample a particle ensemble of size J from a prior distribution π_{0} and update their positions as follows:

For $n=0,1, \ldots$
iii) Update each particle $\boldsymbol{\mu}_{n}^{(j)}$ in the ensemble:

$$
\boldsymbol{\mu}_{n+1}^{(j)} \stackrel{!}{\left.\neq \boldsymbol{\mu}_{n}^{(j)}+Q_{\varepsilon, n}\left(\Sigma+P_{\varepsilon, n}\right)^{-1}\left(\boldsymbol{y}-\mathbf{L} u_{\varepsilon, n}^{(j)}\right), ~\right)}
$$

Such an iteration would not converge to $\boldsymbol{\mu}_{\text {opt }}$ because

$$
\min _{\boldsymbol{\mu} \in \mathcal{P}} \frac{1}{2}\|\boldsymbol{y}-\mathbf{L} u\|_{\Sigma^{-1}}^{2} \neq \min _{\boldsymbol{\mu} \in \mathcal{P}} \frac{1}{2}\left\|\boldsymbol{y}-\mathbf{L} u_{\varepsilon}\right\|_{\Sigma^{-1}}^{2}
$$

THE REDUCED BASIS ENSEMBLE KALMAN METHOD

We sample a particle ensemble of size J from a prior distribution π_{0} and update their positions as follows:

For $n=0,1, \ldots$
iii) Update each particle $\boldsymbol{\mu}_{n}^{(j)}$ in the ensemble:

$$
\boldsymbol{\mu}_{n+1}^{(j)}=\boldsymbol{\mu}_{n}^{(j)}+Q_{\varepsilon, n}\left(\Sigma+\Gamma_{\varepsilon, n}+P_{\varepsilon, n}\right)^{-1}\left(\boldsymbol{y}-\boldsymbol{\delta}_{\varepsilon, n}-\mathbf{L} u_{\varepsilon, n}^{(j)}\right)
$$

where

$$
\begin{align*}
& \delta_{\varepsilon, n}:=\frac{1}{J} \cdot \operatorname{sum}\left(\mathbf{L}\left(u_{\varepsilon, n}^{(j)}-u_{n}^{(j)}\right)\right) \tag{PMQ16}\\
& \Gamma_{\varepsilon, n}:=\frac{1}{J-1} \cdot \operatorname{sum}\left(\mathbf{L}\left(u_{\varepsilon, n}^{(j)}-u_{n}^{(j)}\right) \otimes \mathbf{L}\left(u_{\varepsilon, n}^{(j)}-u_{n}^{(j)}\right)-\delta_{\varepsilon, n} \otimes \delta_{\varepsilon, n}\right)
\end{align*}
$$

THE REDUCED BASIS ENSEMBLE KALMAN METHOD

We sample a particle ensemble of size J from a prior distribution π_{0} and update their positions as follows:

For $n=0,1, \ldots$
iii) Update each particle $\boldsymbol{\mu}_{n}^{(j)}$ in the ensemble:

$$
\boldsymbol{\mu}_{n+1}^{(j)} \approx \boldsymbol{\mu}_{n}^{(j)}+Q_{\varepsilon, n}\left(\Sigma+\Gamma_{\varepsilon, 0}+P_{\varepsilon, n}\right)^{-1}\left(\boldsymbol{y}-\boldsymbol{\delta}_{\varepsilon, 0}-\mathbf{L} u_{\varepsilon, n}^{(j)}\right)
$$

where

$$
\begin{aligned}
& \delta_{\varepsilon, 0}:=\frac{1}{J} \cdot \operatorname{sum}\left(\mathbf{L}\left(u_{\varepsilon, 0}^{(j)}-u_{0}^{(j)}\right)\right) \\
& \Gamma_{\varepsilon, 0}:=\frac{1}{J-1} \cdot \operatorname{sum}\left(\mathbf{L}\left(u_{\varepsilon, 0}^{(j)}-u_{0}^{(j)}\right) \otimes \mathbf{L}\left(u_{\varepsilon, 0}^{(j)}-u_{0}^{(j)}\right)-\delta_{\varepsilon, 0} \otimes \boldsymbol{\delta}_{\varepsilon, 0}\right) \longleftarrow \quad \begin{array}{r}
\text { same } u_{0}^{(j)} \text { used for } \\
\text { training the RB model }
\end{array}
\end{aligned}
$$

OUTLINE

1. INTRODUCTION

2. VARIATIONAL METHODS
3. MODEL APPROXIMATION
4. THE REDUCED BASIS ENSEMBLE KALMAN METHOD
5. NUMERICAL EXPERIMENTS
6. CONCLUSIONS

ADVECTION-DISPERSION PROBLEM

ADVECTION-DISPERSION PROBLEM

$$
\begin{aligned}
& \frac{\partial u}{\partial t}-\mu \cdot \Delta u(t)+v \cdot \nabla u(t)=0 \quad \text { on } \Omega:=(-1,+1)^{2} \quad \text { with } \quad v=\left[\begin{array}{l}
+\sin \left(\pi x_{1}\right) \cos \left(\pi x_{2}\right) \\
-\cos \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right)
\end{array}\right] \\
& u(0)=u_{0}
\end{aligned}
$$

we consider:

- 3 sensor locations
- 40 time-activations per sensor
- $\quad t \in(0,2.4)$
- $\mu \in[1 / 50,1 / 10]$

MODEL ORDER REDUCTION

considering a fine FE discretization as exact model

FE dofs spatial discretization	$=10100$	$(P 2-P 2 G)$
FE dofs time discretization	$=240$	$(P 1-P 0$ PG $)$

[Hec12]

[Hec12]

MODEL ORDER REDUCTION

considering a fine FE discretization as exact model

FE dofs spatial discretization	$=10100$	$(P 2-P 2 G)$
FE dofs time discretization	$=240$	$(P 1-P 0$ PG $)$

employing the weak-greedy-POD algorithm, we achieve relative error $\varepsilon<10^{-3}$ with 42 spatial basis functions

RB dofs spatial discretization $=N_{\varepsilon}$
(RB-RB G)
FE dofs time discretization $=240$
(P1-P0 PG)

MODEL ORDER REDUCTION

considering a fine FE discretization as exact model

FE dofs spatial discretization	$=10100$	(P2-P2 G)
FE dofs time discretization	$=240$	$(P 1-P 0$ PG $)$

employing the weak-greedy-POD algorithm, we achieve relative error $\varepsilon<10^{-3}$ with 42 spatial basis functions
$\begin{array}{lll}\text { RB dofs spatial discretization } & =N_{\varepsilon} & \\ \text { (RB-RB G) } \\ \text { FE dofs time discretization } & =240 & (\text { P1-PO PG) }\end{array}$
training time ~ 2 min, speed up $\times 250$

PARAMETER ESTIMATION : NOISE EFFECTS

we try to estimate the $\boldsymbol{\mu}^{\star}=1 / 25$ from noisy observations of $u\left(\boldsymbol{\mu}^{\star}\right)$
we consider different relative noise magnitudes $\lambda_{\text {max }}^{1 / 2}(\Sigma) /\left\|\mathbf{L} u\left(\boldsymbol{\mu}^{\star}\right)\right\|_{\infty}$
we sample ensembles of size $J=40$ from the prior $\pi_{0}=U(1 / 10,1 / 50)$
we replicate the analysis 64 times for each noise level

PARAMETER ESTIMATION : NOISE EFFECTS

PARAMETER ESTIMATION : NOISE EFFECTS

PARAMETER ESTIMATION : NOISE EFFECTS

PARAMETER ESTIMATION : NOISE EFFECTS

results show a linear convergence when the exact FO model is employed
the error stagnates when the model bias is not corrected in the RB-EnKM
the adjusted RB-EnKM shows an error decay comparable with the FO one
the cost of the RB-EnKM is just $\sim 4 \%$ of the cost of the standard EnKM

PARAMETER ESTIMATION : REDUCED BASIS SIZE

when the measurements bias is not corrected, the relative error is strictly dependent on the RB model accuracy
with the bias correction, the performances of the method are made independent on the $R B$ size (at least for this problem)

OUTLINE

1. INTRODUCTION
2. VARIATIONAL METHODS
3. MODEL APPROXIMATION
4. THE REDUCED BASIS ENSEMBLE KALMAN METHOD
5. NUMERICAL EXPERIMENTS
6. CONCLUSIONS

CONCLUSIONS

SUMMARY:

- we introduced Reduced Basis solvers to improve the EnKM efficiency
- we adjusted the method to guarantee the robustness to model-biases
- we tested the method both on linear and non-linear 2D problems

OUTLOOK :

- the bias correction could be updated as the particles distribution evolves
- the approach could be extended to synchronous data assimilation problems

REFERENCES

[ILS13] M. A. Iglesias, K. J. H. Law, and A. M. Stuart. "Ensemble Kalman methods for inverse problems". In: Inverse Problems 29.4 (2013)
[PMQ16] S. Pagani, A. Manzoni, and A. Quarteroni. "A reduced basis ensemble Kalman filter for state/parameter identification in large-scale nonlinear dynamical systems" (2016)
[TC91] J.-N. Thepaut and P. Courtier. "Four-dimensional variational data assimilation using the adjoint of a multilevel primitive-equation model". In: Quarterly J. of RMetS (1991)
[Cal+18] D. Calvetti et al. "Accounting for model error due to unresolved scales within ensemble Kalman filtering". In: Quarterly Journal of the Royal Met. Society (2018)
[Kär+18] M. Kärcher et al. "Reduced basis approximation and a posteriori error bounds for 4DVar data assimilation", In: Optim. Eng. (2018)
[Hec12] F. Hecht. "New development in freefem++". In: J. Numer. Math (2012)

REFERENCES

[SEB10] P. Sakov, G. Evensen, and L. Bertino. "Asynchronous data assimilation with the EnKF" (2010)
[KNS08] B. Kaltenbacher, A. Neubauer, and O. Scherzer. "Iterative regularization methods for nonlinear ill-posed problems" (2008)
[Lan51] L. Landweber. "An iteration formula for Fredholm integral equations of the first kind". In: American Journal of Math. (1951)
[Eve18] G. Evensen. "Analysis of iterative ensemble smoothers for solving inverse problems". In: Comput. Geosci. 22.3 (2018)
[Gre12] M. A. Grepl. "Certified reduced basis methods for nonaffine linear time-varying and nonlinear parabolic partial differential equations". In: Math. Models Methods Appl. Sci. (2012)

REFERENCES

[UP14] K. Urban, A. Patera. "An improved error bound for reduced basis approximation of linear parabolic problems". In: Mathematics of Computation (2014)
[BHL93] G. Berkooz, P. Holmes, and J. L. Lumley. "The proper orthogonal decomposition in the analysis of turbulent flows". In: Annual review of fluid mechanics (1993)
[HO08] B. Haasdonk and M. Ohlberger. "Reduced basis method for finite volume approximations of parametrized linear evolution equations". In: Math. Model. Numer. Anal. (2008)

THANKS FOR YOUR ATTENTION!

QUESTION TIME

